ارزیابی روش کنترل گروهی دادهها (GMDH) و سیستم استنتاج فازی-عصبی (ANFIS) در پیشبینی خشکسالی در چند نمونه اقلیمی مختلف
نویسندگان
چکیده مقاله:
خشکسالی پدیدهای است که احتمال وقوع آن در همه نقاط کره زمین و با هر شرایط اقلیمی وجود دارد. پیشبینی خشکسالی میتواند نقش مهمی در مدیریت منابع آبی و بهرهبرداری بهینه از آنها ایفا کند. در این مطالعه، برای پیشبینی خشکسالی، کاربرد دو روش هوشمند سیستم استنتاج فازی-عصبی (ANFIS) و کنترل گروهی دادهها (GMDH) چند نمونه اقلیمی مختلف ایران مورد ارزیابی قرار گرفته است. به این منظور از شاخص بارش استاندارد شده (SPI) در سه مقیاس 6،3 و 12 ماهه استفاده شد. آمار و اطلاعات بارندگی طی یک دوره 20 ساله (2015-1996) در 7 ایستگاه سینوپتیک ایران با اقلیمهای متفاوت بکار گرفته شد و جهت بررسی عملکرد مدلها از سه معیار ریشه میانگین مربعات خطا (RMSE)، ضریب تبیین (R2) و میانگین قدرمطلق خطا (MAE) استفاده شد. نتایج نشان داد که در روش ANFIS مقدار ضریب تبیین در کمترین حالت مربوط به SPI سه ماهه (SPI-3) با 59/0 و بیشترین آن در SPI دوازده ماهه (SPI-12) با مقدار 97/0 میباشد. در روش GMDH، مقادیر ضریب تبیین در هر سه مقیاس SPI و در تمامی اقلیمها بین 90/0 تا 99/0 بدست آمد که نشاندهنده دقت قابل قبول این مدل بود. . همچنین نتایج حاکی از عملکرد مناسب SPI در مقیاس دوازده ماهه بودند. . در واقع، بهبود عملکرد مدلهای ساخته شده با افزایش مقیاس زمانی محاسبه SPI، رابطه مستقیمی دارد. در نهایت نتایج مربوط به مقایسه مقادیر مشاهداتی و پیشبینی شدهی هر سه مقیاس زمانی با استفاده از روش GMDH در تمامی اقلیمها نشان داد که پیشبینی خشکسالی با این روش قابل اطمینان و امکان استفاده از این روش برای پیشبینیهای آتی میسر میباشد. بطور کلی نتایج تولید شده توسط هردو روش ANFIS و GMDH دارای دقت قابل قبولی میباشند اما پاسخهای بدست آمده از روش GMDH بهتر بوده و به عنوان مدل برتر در پیشبینی خشکسالی در این پژوهش معرفی میگردد
منابع مشابه
بررسی امکان کاربرد سیستم استنتاج فازی- عصبی تطبیقی (ANFIS) در برآورد بار رسوب معلق بابلرود
Sediment load estimation is one of the most important issues in rivers & dam reservoirs management and generally in water projects. Various empirical equations show that proper analytical or empirical method is not suggested for correct estimation of suspended sediment, yet. In the present study, to assessment of closer estimation to actual data of transported sediment in Ghoran Talar station l...
متن کاملمدلسازی مکانی مناطق اکتشاف نفتی با سیستم استنتاج فازی عصبی تطبیقی (ANFIS) در GIS
فرآیند اکتشاف منابع هیدروکربنی فرآیندی بسیار پیچیده و پرهزینه میباشد. در این فرایند فاکتورهای متعدد زمینشناسی، ژئوشیمی و ژئوفیزیک تهیه و باهم تلفیق میشوند. طراحی بهترین مسیر برای برداشت دادههای لرزهنگاری و همچنین تعیین بهترین محل برای حفر چاههای اکتشافی از اهمیت ویژهایی برخوردار است، زیرا عدم دقت در انتخاب موقعیت مکانی، صرف هزینه و زمان زیاد در طول عملیات میباشد. هدف این تحقیق تعیین م...
متن کاملمدلسازی بارش- رواناب با سیستم استنتاج فازی- عصبی تطبیقی (ANFIS) و رگرسیون خطی چندمتغیره (MLR)
در این پژوهش، کارآیی سیستم فازی- عصبی برای برآورد رواناب ناحیه کوهستانی حوضه هراز مورد ارزیابی قرار گرفت. هدف ایجاد مدلی با توابع و درجه عضویت مناسب است که بتواند رابطه بارندگی- رواناب را در یک حوضه بهدرستی برقرار کند. بدین منظور برای پیشبینی رواناب، 44 ترکیب مختلف از پارامترهای بارندگی، دما، تبخیر، دبی جریان و شاخص بارش پیشین با تأخیر زمانی بین آنها بهصورت روزانه طی دوره 32 سال آماری وارد م...
متن کاملطراحی مدل سیستم استنتاج فازی عصبی - تطبیقی ( ANFIS) برای ارزیابی و پیشبینی سطح مدیریت دانش سازمان با محوریت نوآوری.
در سالهای اخیر مدیریت دانش به یک موضوع مهم و حیاتی در تمامی سازمانها تبدیلشده است. یکی از عوامل مؤثر در ایجاد و گسترش نوآوری، مدیریت دانش است. با نوآوری، برتریهای بلندمدت سازمان در عرصههای رقابتی حفظ شود. ارزیابی و پیشبینی سطح مدیریت دانش برای مدیران بسیار بااهمیت است. در میان روشهای نوین مدلسازی، سیستمهای فازی از جایگاه ویژهای در زمینههای مختلف علوم برخوردارند. این پژوهش از نظر هدف،...
متن کاملطراحی مدل پیشبینی و ارزیابی ظرفیت نوآوری شرکتهای دانشبنیان با رویکرد استنتاج فازی عصبی- تطبیقی(ANFIS)
ارزیابی ظرفیت نوآوری شرکتهای دانش بنیان و پیشبینی میزان ظرفیت نوآوری آنها برای این شرکتها بسیار حائز اهمیت است و تصمیم در خصوص انتقال یا بسط فناوری شرکت تابع میزان ظرفیت نوآوری است. هدف اصلی این تحقیق، طراحی مدل ارزیابی ظرفیت نوآوری شرکتهای دانش بنیان با رویکرد استنتاج فازی عصبی- تطبیقی است. سیستم استنتاج فازی عصبی - تطبیقی ([1]ANFIS) روش مناسبی برای حل مسائل غیرخطی است. ANFIS ترکیبی...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 1397 شماره 35
صفحات 1- 18
تاریخ انتشار 2019-02-20
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023